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1. INTRODUCTION

The objective of this program was to determine if the use of 3/16 inch
tubing with MIL-H-83282 fluid in an 8000 psi hydraulic system degrades system
performance or results in unacceptable waiting time for system to warm to
operating temperature. Dynamic performance can be affected due to increase in
viscosity of hydraulic fluids at low temperature. The combinations of high
flow demand, small tube diameters, and low temperatures present a unique set
of problems which are solvable given adequate information and test data.
Some performance characteristics such as line and orifice pressure drop at
steady state conditions may be analyzed using fairly simple math models.
Dynamic performance of a flight control actuator is much harder to predict. A
test of the actuator with proper instrumentation under specified conditions is
extremely valuable to verify analytical predictions.

System performance was measured in terms of the fluid temperature at
which a servo actuator met minimum frequency response and zero load rate
criteria. The acceptability of 8000 psi system performance was based upon an
equivalent 3000 psi system. The time required from system start up until oil
temperature allows the system to meet minimum frequency response requirements
is important because it affects weapon system availability and response time
once put on an alert status.

For a hydraulic servo system, the actuator output position at any
point in time should correspond to the position commanded. When a uniform
cyclic input is fed into a servoactuator, the output follows the input very
closely at low frequencies. But at high frequency, the output does not follow
the input as accurately. The output signal begins to rise later than the
input and reaches a maximum sometime after the input does. This error between
input and output is a measure of performance and is expressed by the ratio of
the output magnitude to the input magnitude. This ratio is called the
amplitude ratio.

I
Another measure of performance from the same comparison of input

signal to output signal is the angle between the input curve and the output
curve which is called the phase angle. When the output begins to follow the
input at high frequencies, the output is said to lag the input. The frequency
at which the output lags the input by 90 degrees is usually specified as a
critical performance criterion.

A third measure of performance is zero load surface rate which
determines line size and orifice area for a servoactuator. The surface rate
in degrees per second can be converted to the equivalent actuator piston speed
in inches per second. If zero load velocity is reduced relative to design
requirements at low temperatures, the frequency response will also be reduced.

-4-
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2.0 DISCUSSION OF TEST PROGRAM

2.1 Program Plan

The program plan consisted of the following steps:

o Select a test circuit from an aircraft which is representative
and can be duplicated in a test.

o Perform frequency response and zero load rate tests on equivalent
circuits at 3000 psi and at 8000 psi. Determine the fluid
temperature(s) at which minimum frequency response and rate
criteria are met for each system.

o Using published data for low temperature environmental tests of
aircraft, estimate the length of time for the 8000 psi system to
meet minimum frequency response and zero load rate and compare
against the time for a 3000 psi system.

2.2 Test Circuits

The aircraft circuit used in tests was the wing plumbing for the A-7
aircraft aileron actuator which is installed as shown on Figure 1. This
circuit was selected because of relative high flow rate, long line lengths,
and small diameter tubing. In order to accommodate the system within a small
volume which could be temperature controlled, the lengths for pressure and
return lines for the two hydraulic systems supplying the actuator were
averaged and the total number degrees of bends were tabulated.

A-7 Aircraft Aileron Actuator Plumbing Analysis - 3000 PSI System

Tube Dia. -- Inches
1/4 3/8

System Function Length No. Bends Total Deg. Length No. Bends Total Deg

PCl Pressure 10.95 26 1273 8.07 8 348
PC2 Pressure 15.32 21 1400 9.01 8 398
PCl Return 11.19 27 1228 7.96 8 329
PC2 Return 16.31 22 1528 8.99 8 390

53.77 96 5429 34.03 32 1465

AVG LENGTH 1/4 TUBE = 53.77/4 = 13.4 feet

AVG DEG 1/4 DIA TUBE = 5429/4 = 1357 degrees

AVG LENGTH 3/8 DIA TUBE = 34.03/4 = 8.5 feet

AVG DEGREES 3/8 DIA TUBE 1465/4 = 366 degrees

-5-
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The test circuit shown on Figure 2 was used to duplicate line lengths
and bends as closely as possible. Test circuit tube diameters, line lengths,
and total degrees of bends are tabulated below.

TUBE DIA -- INCHES
3/16 1/4 3/8

FT BNff- FT M T- ENI)
Pressure-psig System Application LGTH DEG LGTH DEG LGTH DEG

3000 PCI Pressure -- -- 13.4 1440 8.5 360
8000 PCl Pressure 13.4 1440 8.5 360 -- --

3000 PC2 Pressure -- -- 13.4 1440 8.5 360
8000 PC2 Pressure 13.4 1440 8.5 360 -- --

3000 PCi Return -- -- 13.4 1440 8.5 360
8000 PCl Return 13.4 1440 8.5 360 -- --

3000 PC2 Return -- -- 13.4 1440 8.5
360

8000 PC2 Return 13.4 1440 8.5 360 --

To further insure a fair comparison of 3/16 and 1/4 diameter tubing
affect on performance, coil tube assemblies for the 3000 psi and the 8000 psi
test circuit were designed in 1/4 inch and 3/16 inch tubing respectively to
accept the motion of the actuator housing with respect to the test fixture.
The test installation is shown in Figure 3.

2.3 Test Actuators

The actuator used for the 3000 psig circuit was a production aileron
actuator (PN 215-82031) from the A-7 aircraft. The actuator was designed and
fabricated by Vought Corporation. The actuator used for the 8000 psi circuit
was an aileron actuator (PN 83-00221) from the Lightweight Hydraulic Systems
Program Ref [1]. The 8000 psi actuator was also Oesigned and fabricated by
Vought. The two actuators were designed for the same performance requirements
with the exception of pressure. Output thrust was to be the same, except in
order to use standard seals, thrust of the 8000 psi actuator was 33% higher in
the extend direction. Servovalve spool diameters were the same. Servovalve
orifice area for each actuator was designed for a zero load rate of 10
inches/second. The input linkage gain was the same. The installed length and
stroke were the same. The pressure and return port locations were the same.
MIL-H-83282 fluid was used for both circuits. Some pieces of hardware were
common to both actuators. Figures 4 and 5 are cross section assembly drawings
of the two actuators used.

-7-
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FIGURE 3. PHOTOGRAPH OF TEST INSTALLATION shows test actuator with
coiled tubing for flexible plumbing (upper right) 10 gallon
accumulater (left), and simulated wing tubing (lower right).
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2.4 Results of Performance Tests

The frequency response results were measured against a performance
criteria of -3 db amplitude ratio (AR) and -45 degree phase angle (0) at
8.4 Hz. The value of 8.4 Hz was selected after calculating the frequency at
which each actuator would have -3 db AR and -45 degree 0 using known
orifice areas, cylinder areas, and idler gain. These calculations assumed
full supply pressure to the valve and gave 8.4 Hz for the 8000 psi actuator
and 9.94 Hz for the 3000 psi actuator. The value of 8.4 Hz was selected
because it would result in the most conservative comparison of the two systems.

2.4.1 Frequency Response Results - The test plan called for frequency
response tests to be made on each test circuit at fluid temperatures of -40,
-20, 0, +20, +40, +80, and +120 degrees fahrenheit. Due to the uncertainty of
cooling a 10 gallon reservoir of oil to the desired test temperature, actual
test temperatures varied from-the ideal values. Therefore, all test data
plotted shows the actual fluid temperature. Amplitude ratio and phase angle
were plotted continuously against frequency at each temperature. This data
was surveyed and the following data was obtained.

Frequency at Amplitude Ratio of -3db versus Temperature

Frequency at Phase Angle of -45* versus Temperature

Figures 6 and 7 show plots of the data for Amplitude ratio and phase
angle respectively. In order to determine the temperature at which each
system met the minimum criteria of 8.4 Hz at -3db or at -45 degrees, various
curve fits were attempted on each set of points until a reasonably good fit
was obtained. The temperatures at which minimum frequency response criteria
were met were -18 and +14 degrees F respectively for amplitude ratio of -3db
at 8.4 Hz for the 3000 and 8000 psi systems (Figure 6). The temperatures at
which -45 degrees phase angle occurred at -8.4 Hz were -20 and +23 degrees F,
respectively for the 3000 and 8000 psi systems. The 8000 psi data points
above 50 degrees were ignored because they are assumed to be the result of an
Instrumentation failure.

2.4.2 Zero Load Rate Test Results - As with the frequency response tests,
the test plan called for zero load rate tests to be conducted at fluid
temperatures of -40, -20, 0, 20, 40, and 120°F. Because of variation in
actual test temperature, all data plotted shows the actual fluid temperature
for each data point.

In order to determine the temperatures at which each system met a zero
load rate of 10 inches/second, the rate versus temperature data for each
system was plotted using various curve fits. The best fit was obtained using
a fourth degree polynomial curve for each set of data. Figure 8 shows the
plotted rate versus temperature data. The 3000 psi circuit gave 10
inches/second at 340F. The 8000 psi circuit gave 10 Inches/second at 450F.
Table 1 summarizes the results of test data.

-12-
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3.0 ESTIMATE OF 8000 PSI AIRCRAFT SYSTEM WARM UP TIME

3.1 Basis for Comparison

All data from tests was on a simulated portion of a total aircraft

hydraulic system. The tests established the temperatures at which a typical
circuit might reach acceptable performance. The problem remaining was to

correlate data from the test circuit with the same circuit in an aircraft
which has been cooled to the same low temperature. The aircraft data to be

used for comparison is from reference [2) for an A-7D aircraft in
environmental tests at Eglin AFB. The wing circuit plumbing in the A-7D is

identical to the aileron circuit simulated in performance tests. The specific
data used from reference [2) was Run No. 19, -40 degrees F, conducted 18
October 1969. Test conditions in reference [2] were:

(1) Temperature transducers were installed at critical locations
throughout the aircraft hydraulic system. This instrumentation
included a temperature transducer to record PC2 pressure oil
inlet temperature at the left hand aileron actuator.

(2) The total aircraft was cold soaked at -45 degrees F for 52 hours.

(3) The engine was started and time versus temperature data was
recorded.

(4) The flight controls were not cycled. The only flow throughout
the hydraulic system during the time period of interest was
quiescent case drain and servovalve neutral leakage.

(5) Hydraulic fluid was MIL-H-5606.

Table 2 reproduces the data from reference [2] in part. The elapsed

time from engine start and PC2 aileron inlet oil temperature is shown.

The plan for estimating the difference in warm up time for typical

aircraft 3000 psi system and a typical aircraft 8000 psi system was as follows:

(1) Determine a heat transfer model for the aileron circuit.

(2) Compute the rate of heat into the 3000 psi aileron circuit.

(3) Using the same heat transfer model, substitute surface areas,
masses, and coefficients of specific heat for an 8000 psi aileron
circuit to calculate oil temperature at aileron inlet versus time.

(4) Rate of heat into the 8000 psi circuit is identical to the rate

of heat into the 3000 psi circuit assuming the same horsepower
losses in each system.

-17-
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TABLE 2. Data From A-7D Category I Tests

Soak Time: 52 Hours

Soak Temperature -45*F

This is a listing of data used with time zeroed to begin with engine
start.

Outside Air PC2 Pump LH Aileron PC2 Pump

Time-sec Temp - °F Out Temp -F Inlet Temp -OF Out Pressure PSI

0 - 38.2 - 38 - 32 25

8 - 38.2 - 40 - 32 49

16 - 38.2 - 35 - 32 77

23 - 40.0 - 23 - 32 56

31 - 40.0 - 17 - 32 46

70 - 38.2 - 19 - 29 2196

133 - 40.0 54 - 31 2981

195 - 38.2 101 - 20 2964

258 - 38.2 127 3 2957

381 - 38.2 160 53 2946

433 - 38.2 170 60 2897

-18-
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3.2 Heat Transfer Model for Aileron Circuit

In the time period of interest, heat transfer into the aileron circuit
is part of the heat generated by the pump. This heat is carried into the
aileron circuit by the oil flow in the pressure line due to servovalve neutral
leakage . Figure 9 is a plot of the aileron inlet oil temperature versus time
from reference [2]. This figure gives the time to reach critical temperatures
in the 3000 psi circuit for the total aircraft. These temperatures all lie
within the linear portion of the curve of Figure 9, therefore, the heat
transfer model only duplicated the linear portion of the curve. The heat
transfer calculation procedure given in reference [3) was adapted for use in
this problem. Assumptions made were: (1) All heat transfer is by convection
through walls at tubing, (2) flow rate of warm oil into circuit is constant,
and (3) no heat is generated due to pre;sure drop in lines. The method is an
iterative procedure with the following essential steps:

(1) Calculate the heat input in BTU in a given constant time
increment.

(2) Calculate an estimate of aileron inlet temperature rise using the
known heat input, mass of oil, mass of tubing, and respective
specific heat coefficients.

(3) Calculate the average temperature rise of the circuit based upon
the initial temperature rise estimate.

(4) Calculate the heat dissipated based upon the average temperature
rise.

(5) Calculate the net heat added.

(6) Calculate a revised estimate of temperature rise at aileron inlet.

(7) Calculate new circuit temperature.

(8) Go to step (1).

For the 3000 psi system, a value for rate of heat input was
established by trial and error for a linear time versus temperature curve
which coincided with the linear portion of the actual time versus temperature
data from reference [2]. The rate of heat input established by this procedure
for the 3000 psi system was .660 BTU/sec into the aileron circuit. Figure 10
shows the data used for the 3000 psi and equivalent 8000 psi aileron wing
circuits used in the heat transfer model. In order to calculate the time
versus temperature cirve for an equivalent 8000 psi system, it was recognized
from the plot of the 3000 psi aircraft data that a finite time period was
required for hot oil to flow from the pump to the aileron actuator.

Analysis of the aircraft test data from reference [2] indicates that
aileron inlet temperature began to rise when the PC2 pump pressurized the
system at 133 seconds after en ine start. Extension of the linear portion of
the aircraft test data to -40°F gave 170 seconds elapsed time as the start of

-19-
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3000 PSI SYSTEM

5/8X.035X106 l/2X.028X25.62 3/8X.016X97.44 1/4X.016X62.81 1/4X.02OX108.55(-

From Fuselage Aileron
Servovalve

Tube Surface Area = 497.5 IN2 = 3.46 Ft 2

Tube Volume = 12.01 IN = 3.603 lb STL
Oil Volume = 44.72 IN3 = 1.44 lb MIL-H-5606

Cv Steel = .109 BTU/lb-°F
Cv MIL-H-5606 = .48 BTU/lb°F

Total Surface = 3.46 + .35* = 3.81 FT2

Total £.mCv = .109(3.603+.36*)+.48(l.44 +.14*) = 1.19 BTU/°F

8000 PSI SYSTEM

1/2X.O41X106 3/8X.030X25.62 1/4X.020X97.44 3/16X.020X62.81 3/16X.O20X108.55.

From Fuselage Aileron
Servoval ve

Tube Surface area = 371.16 IN2 = 2.6 Ft2

Tube Volume = 10.31 In = 3.093 lb STL
Oil volume = 22.85 In3 = .72 lb MIL-H-83282

Cv STEEL = .109 BTU/lb-OF
Cv MIL-H-83282 = .45 BTU/lb-°F

Total Surface = 2.6 + .26* = 2.86 Ft2

Total EmCv = .109(3.093 +.45(.73 +.07*) = .731 BTU/°F

* 10 Percent added for Fittings

FIGURE 10. CIRCUIT DATA USED IN HEAT TRANSFER STUDY is based upon
aileron plumbing in fuselage and wing of A-7 aircraft.

-21 -
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heating for the 3000 psi heat transfer model. In order to calculate the
elapsed time to start of heating for the 8000 psi heat transfer model, the sum
of three time periods must be calculated.

t 8 00 0  = tl, + t2 + t 3

where: t1 is the elapsed time from engine start until pump
pressurizes system. ti = 133 seconds which is equal
to t1 for the 3000 psi heat transfer model.

t2 is the delta time from system pressurization to the
straight line intersection at -40F. t2 = 37 seconds
which is equal to t2 for the 3000 psi heat transfer model.

t is the delta time due to difference in neutral leakage
Row of the 3000 psi and 8000 psi systems.

Therefore, t3 = 0 for the 3000 psi heat transfer model. For the
8000 psi heat transfer model, t3 is proportional to the total elapsed time
for the 3000 psi heat transfer model and inversely proportional to the maximum
allowable neutral leakage in equivalent 3000 psi and 8000 psi aircraft
hydraulic systems. Assuming maximum neutral leakage for each circuit, the
time for a unit volume of fluid to flow from the PC2 pump to the aileron
actuator inlet is 30.76 seconds. For an equivalent 8000 psi system, the time
for a unit volume of fluid to flow from the PC2 pump to the aileron inlet is
43.1 seconds. Since tj and t2 for the 3000 psi heat transfer model are
identical to t1 and t2 for the 8000 psi heat transfer models,
t8 000 = t3000 + t3.

The equation to solve for t3 is:

t3000 + t3 min - 8000

t 3000 tmn - 3000

Substitution of known values gives:

170 sec + t3  43.10 sec

170 sec 30.76 sec

t = 68

Therefore: t8000 = 133 + 37 + 68 = 238 seconds
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Because the iterative heat transfer model used 10 second increments
for each interation, a time delay of 230 seconds was used for the 8000 psi
heat transfer model.

Using a time delay of 230 seconds for heating to begin in the 8000 psi
aileron circuit, a rate of heat transfer into the circuit of .660 BTU/sec, and
the respective surface areas, masses, and specific heat coefficients, values
for 8000 psi aileron inlet oil temperature versus time were calculated. The j
calculations are shown on Tables 3 and 4. A plot of aileron inlet oil
temperature versus time is shown on Figure 9 for the 3000 psi aircraft data
and the calculated equivalent 8000 psi aircraft. From Figure 9, the time
differentials to attain the same performance standards may be determined. The
following times and temperatures were obtained for -45 degree lag in phase
angle and 10 in/sec no load rate and shown on Table 5. The maximum time
difference is for phase angle and is equal to 1.83 minutes. This represents
the additional time for the 8000 psi system to be operational if the aircraft
is cold soaked, the engine started, and the system allowed to warm up strictly
by means of circulation of warm oil at neutral leakage flow rates. It should
be pointed out that if control surfaces were cycled periodically after engine
start up, there would be no time difference to attain the same performance for
the two systems.

Referring back to Figure 9, the difference in the slope of the linear
portion of the time versus temperature curves is due to the reduced surface
area and lower mass of the equivalent 8000 psi circuit compared to the 3000
psi circuit.

S

p
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TABLE 3. HEAT TPANSFER STUDY - 3000 PSI SYSTEM duplicates linear portion
of time versus temperature data from A-7D Category II Tests.

CONSTANTS:

TUDE SUJRF AREA - SUF'T - 3
TUBE MATERIAL MASS-LD 3.96 (STEEL)
OIL MASS - LB 1.58 (MIL-N+-5606)
SPECIFIC HT COEF (STEEL) - 0.11
SPECIFIC HEAT COWF (OIL) - 0.40
HEAT INPUT - 8TU/SEC 0.66
SUM MASSiSPECIFIC HEAT - 1.19

A 3C D E F 9NI

TIME - HEAT IN - 1ST EST AVG OIL DELTA T HEAT NET HEAT 2ND EST EST AIL
SECONDS BTU OF TEMP TEMP RISE DISSAPAT ADDED - OF TEMP INLET

RISE - BTU BTU RISE TEMP - F
(1) (2) (3) (4) (5) (W) (7)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
20.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
30.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
40.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
60.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
70.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
80.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
90.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
110.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
120.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
140.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
150.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
160.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
170.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
180.00 6.60 5.54 -37.23 2.77 0.07 6.53 5.47 -34.53
190.00 6.60 5.54 -31.76 8.24 0.22 6.38 5.35 -29.17
200.00 6.60 5.54 -26.41 13.59 0.36 6.24 5.23 -23.94
210.00 6.60 5.54 -21.17 19.93 0.50 6.10 5.12 -18.82
220.00 6.60 5.54 -16.05 23.95 0.63 5.97 5.00 -13.82
230.00 6.60 5.54 -11.05 20.95 0.77 5.83 4.89 -8.92
240.00 6.60 5.54 -6.16 33.84 0.89 5.71 4.79 -4.14
250.00 6.60 5.54 -1.37 39.43 1.02 5.58 4.46 0.54
260.00 6.60 5.54 3.31 43.31 1.14 5.46 4.58 5.12
270.00 6.60 5.54 7.99 47.08 1.27 5.33 4.47 9.59
280.00 6.60 5.54 12.36 52.36 1.38 5.22 4.37 13-97
290.00 6.60 5.54 16.73 54.73 1.50 5.10 4.28 18.24
300.00 6.60 5.54 21.01 61.01 1.61 4.9 4.19 22.43
310.00 6.60 5.54 25.19 65.19 1.72 4.8 4.09 26.52
320.00 6.60 5.54 29.29 69.29 1.83 4.77 4.00 30.52
330.00 6.60 5.54 33.28 73.28 1.94 4.66 3.91 34.43
340.00 6.60 5.54 37.19 77.19 2.04 4.56 3.82 38.25
350.00 6.40 5.54 41.02 81.02 2.14 4.46 3.74 41.99
360.00 6.60 5.54 44.76 84.76 2.24 4.36 3.66 45.65
370.00 6.60 5.54 48.41 08.41 2.34 4.26 3.50 49.22
380.00 6.60 5.54 51.99 91.99 2.43 4.17 3.50 52.72
390.00 6.60 5.54 55.49 95.49 2.52 4.08 3.42 54.14
400.00 6.60 5.54 58.91 99.91 2.61 3.99 3.34 59.48
410.00 6.60 5.54 62.25 102.25 2.70 3.90 3.27 62.75

NOTES:
1. (HEAT INPUT)/(SUM MASS OIL, TUBING TIMES SP HT) - COL 3/(SUM MASSeCV)
2. TEMPERATURE OF INLET OIL AT START OF TIME PERIOD + 1/2 COL C
3. COL D - AMBIENT TEMPERATURE
4. HEAT DISSAPATED - (.00069444)(10 SEC) (AREA)(COL E)
5. COL 3 -COL F
6. NET NEAT ADDED/(SUM MASSCV) - COL S/(SUM MASECV)
7. TEMPERATURE OF INLET OIL AT START OF TIME PERIOD . COL H
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TABLE 4. HEAT TRANSFER STUDY - 8000 PSI SYSTEM estimates time versus
temperature using same method as used for 3000 psi system.

CONSTANT:
"................. ......................................
TUBE SURF AREA -SOFT 2.86
TUBE MATERIAL MAUd-L , 3.40 (STEEL)
OIL MASS - L8 , 0.30 (MIL-H1-83252)
SPECIFIC HT COEF (STEEL) , 0.11
SPECIFIC HT COEF (OIL) , 0.45
HEAT INPUT - BTU/SEC * 0.66
SUM MASS*SPECIFIC HT " 0.73.. . ............... ........ ....... ........ ........ ........ ........ ..... ....

A a C 0 E F a H I
TIME - HEAT IN - IST EST AV OIL DELTA T HEAT NET HEAT 2ND EST EST AIL
SECONDS BTU OF TEMP TEMP RISE DIUSAPAT ADDED - OF TEMP INLET

RISE - aTm Iru RISE TEMP - F
(1) (2) (3) (4) (5) (6) (7)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
20.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
30.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
40.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
60.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
70.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
90.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
90.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
110.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
120.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
140.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
150.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
160.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
170.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
190.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
190.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
200.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
210.00 0.00 0.00 0.00 0.00 0.00 O.00 0.00 -40.00
220.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
230.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -40.00
240.00 6.60 9.01 -35.49 4.51 0.09 6.51 6.9 -31.11
250.00 4.60 9.01 -26.60 13.40 0.27 6.33 3.65 -22.46
260.00 6.60 9.01 -17.95 22.05 0.44 6.16 3.42 -14.04
270.00 6.60 9.01 -9.54 30.46 0.61 5. 3 9.19 -5.95
290.00 6.60 9.01 -1.35 38.65 0.77 5.63 7.97 2.11
290.00 6.60 9.01 6.62 46.62 0.93 5.67 7.75 9.96
300.00 6.60 9.01 14.37 54.37 1.0. 5.52 7.54 17.40
310.00 6.60 9.01 21.91 61.91 1.23 5.37 7.33 24.73
320.00 6.60 9.01 29.24 69.24 1.36 5.22 7.14 31.87
330.00 6.60 9.01 36.38 76.38 1.52 5.06 6.94 3.91
340.00 6.60 9.01 43.32 83.32 1.65 4.95 6.75 45.57
350.00 6.60 9.01 50.07 90.07 1.79 4.81 6.57 52.14
360.00 6.60 9.01 56.64 96.64 1.92 4.68 6.39 58.53
370.00 6.60 9.01 63.04 103.04 2.05 4.55 6.22 64.75

NOTES:
1. (HEAT INPUT)I(SUM MASS OIL# TUBING TIMES SP HT) - COLD/(SUM MAS*CV)
2. TEMPERATURE OF INLET OIL AT START OF TIME PERIOD * 1/2 COL C
3. COL 0 - AMBIENT TEMPERATURE
4. HEAT DISSAPATED - (.00069444)(10 SEC) (AREA) (COL E)
5. COL 5 -COL F
6. NET HEAT ADDED/(SUM MASS*CV) - COL G/(SUM MASS*CV)
7. TEMPERATURE OF INLET OIL AT START OF TIME PERIOD + COL H
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4.0 CONCLUSIONS

The adoption of 3/16 inch OD tubing in 8000 psi systems using
MIL-H-83282 fluid will not affect weapon system readiness at low
temperatures. The test results and analysis of this program show that even
though the temperature to achieve the minumum performance criteria was higher
for the 8000 psi test circuit in each instance, the time to achieve the
temperatures was comparable for the two systems when the total aircraft is
considered.

The aircraft data used to establish the time to achieve minimum
operating temperature came from low temperature tests on an instrumented
aircraft with a 3000 psi hydraulic system. The test procedure for the low
temperature tests required starting the engine and reaching the elapsed time
and temperatures. No cycling of controls was done during the period of
interest. As a result, the 3000 psi aircraft system required 5.5 minutes to
reach 34 degrees F at which the zero load rate was met. The only means of
heat transfer from warm fluid was by neutral leakage of the system. If the
flight controls had been cycled immediately after engine start, the zero load
rate temperature would have been reached much more rapidly and would have been
reduced to one to two minutes.

The 8000 psi aileron circuit tested was representative of the
recommendations of Ref [l) for tube diameters but duplicated 3000 psi system
line lengths. The performance of the 8000 psi circuit could have been
improved if the circuit tube diameters and line length for each diameter had
been designed for reduced line losses and increased actuator rate. This was
not done in the interest of reducing the number of variables changed from the
8000 psi circuit to the 3000 psi circuit. Also, duplication of line lengths
acted to make the analysis more convervative by not making any circuit changes
to reduce the temperatures at which the 8000 psi system met minimum
performance criteria. Relatively simple line pressure drop and orifice area
math models of the circuit could have been used to determine the changes
required to improve performance of the 8000 psi circuit to coincide or more
nearly match that of the 3000 psi circuit at each temperature.

The no load rate results showed only a minor difference between the 3000
psi and 8000 psi systems. Calculation of the theoretical zero load rate for
each actuator assuming full supply pressure to the valve shows the 3000 psi
actuator to be moderately overdesigned with an average rate of 13.15 in/sec.
The 8000 psi actuator meets the requirement with an average zero load rate of
10.84 in/sec. The orifice slot width on the 8000 psi actuator would have to
be .009 versus .0077 to match the 3000 psi actuator theoretical rate.
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5.0 CRITIQUE OF TEST RESULTS

5.1 Test Temperatures

Ideally, the performance tests were to be conducted at temperatures of
-40, -20, 0, +20, +40, and +120 degrees inlet oil temperature to the aileron
actuator. In order to provide sufficient oil at relatively constant
temperature for each test, a 10 gallon bladder type accumulator was plumbed
into the circuit. The accumulator was pressurized by oil pressure from the
pump so that outlet pressure of the accumulator would be fairly constant.
rior to each test, the accumulator, actuator, and all test circuit plumbing

were cold soaked for a number of hours. The cold soak time was calculated
using a published formula for a cylindrical object. However, as tests were
conducted, the resultant oil temperature was not the "ideal" test
temperature. This variance is due to the uncertainty of knowledge of the
actual bulk oil temperature in the accumulator as there was no way to insert a
submerged thermocouple into the accumulator. Therefore, all temperatures in
plotted data of test results are based upon actual temperatures recorded
during the tests. Also, additional tests were made to assure a sufficient
number of data points.

5.2 Test Actuators

As nearly as possible, the 3000 psi and the 8000 psi actuators used in
the tests were designed for the same performance requirements. The 8000 psi
actuator was on loan from the 8000 psi "iron bird" tests being conducted at
the Columbus Division of Rockwell International. The 8000 psi tests were
conducted first, then the actuator was returned and 8000 psi plumbing was
removed from the test circuit in preparation for the 3000 psi performance
tests. It was discovered after the actuator was returned to Rockwell that one
of the piston seals in the 8000 psi actuator had failed and the other piston
seal was failing. The failed seal had leakage of 80-100 cc/min. The
immediate concern was if the leaking piston seals had any affect on the test
results. It was concluded that the leaking pistons would not affect test
results for the following reasons:

(1) The tests were run with no load on the actuator. Large
differential pressures were not created across the pistons;
therefore, leakage during tests would only be the result of a few
hundred psi differential pressure across the seal.

(2) Only one of the piston seals had failed. The actuators are
designed for one half of the required thrust and full rate to be
available from each half. Therefore, the capability of the seal
which had not failed would have been sufficient for the rate
dependent tests being conducted.

(3) The piston seal leakage at worst would only make the 8000 psi
actuator operate with reduced performance and would make any
conclusions drawn from the tests more conservative.
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APPENDIX A - TEST DATA

TABLE A-1 3000 PSI Amplitude Ratio and Phase Angle Test Data

AR PHASE"IDEAL" ACTUAL AVERAGE Hz@ Hz@
RUN NO. TEST TEMP OIL TEMPERATURE -3db -45°F

12 120 121.3 15.7 13.0

13 40 41.3 15.0 12.0

14 20 22.2 13.0 12.0

15 0 14.0 13.2 12.0

16 - 20 - 27.4 6.0 1.4

17 - 40 - 27.2 4.6 4.9

18 0 - 3.8 9.0 11.7

19 - 20 - 8.2 9.4 10.3

20 - 20 - 22.9 6.8 8.4

21 - 40 - 39.7 3.3 4.0

TABLE A-2 3000 PSI Zero Load Rate Test Data

"IDEAL" ACTUAL AVERAGE
RUN NO. TEST TEMP OIL TEMPERATURE ZERO LOAD RATE

1 60 62.6 11.4

2 80 79.8 12.0

3 100 100.7 12.2

4 120 123.4 12.7

5 40 39.1 10.9

6 20 22.2 9.4

7 0 8.3 5.8

8 - 20 - 18.5 3.6

9 - 40 - 35.7 .92

A-1
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APPENDIX A - TEST DATA

TABLE A-3 8000 PSI Amplitude Ratio and Phase Angle Test Data

AR PHASE
"IDEAL" ACTUAL AVERAGE Hz @ Hz

RUN NO. TEST TEMP OIL TEMPERATURE -3db -45 De

3 120 119.7 8.2 7.8

4 40 43.0 9.8 9.8

5 52 51.9 8.9 8.4

6 20 25.3 10.0 8.8

7 0 6.8 10.2 8.8

8 - 20 - 16.1 7.5 6.7

9 - 40 - 33.7 2.5 4.0

10 - 20 - 1.9 8.0 8.7

11 0 24.4 10.5 9.1

12 60 63.5 9.8 7.1

13 40 50.1 8.9 8.0

14 20 38.9 8.4 9.8

TABLE A-4 8000 PSI Zero Load Rate Test Data

"IDEAL" ACTUAL AVERAGE
RUN NO. TEST TEMP OIL TEMPERATURE ZERO LOAD RATE

15 80 85.7 11.2

16 90 91.7 11.1

17 120 121.6 11.7

18 60 62.6 11.4

19 40 48.6 10.0

20 0 - 0.4 4.2

21 - 40 - 42.2 .76
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APPENDIX B

REVIEW OF WARM UP TIME ON SELECTED AIRCRAFT

1.0 INTRODUCTION

References [2, 4, 5, 6, 7, and 8] were reviewed for any information on
hydraulic system performance at low temperatures which may be applicable to
this program. The aircraft tested in low temperature environments and
reported upon in the listed references were the A-7D, T-38A, A-IOA, F-4E,
F-16, and F-105B. Of particular interest were references [5 and 7) on the
A-10 and F-16 respectively, because the fluid used was MIL-H-83282. One
difficulty encountered in making this review was the lack of uniformity in
instrumentation and test conditions. Not all reports had time versus
temperature data. Some general conclusions may still be drawn.

2.0 RESULTS OF REVIEW

The review is summarized on Table B-1 for the six hydraulic systems.
System hydraulic pumps reached full system pressure as low as 10 to 15 seconds
and up to 133 seconds after engine start at temperatures of -20°F and below.
The test procedures varied from no cycling of hydraulic powered functions
initially to immediate cycling of hydraulic powered functions after engine
start. Systems using MIL-H-83282 typically reported marked slow down of flaps
and speed brake at temperatures of -20°F and below. No outstanding flight
control temperature related performance problems were reported. Most
hydraulic system problems were external leakage and leakage across accumulator
piston seals.

3.0 CONCLUSION
I

Because no major flight control warm up problems were reported, it can
be concluded that if an 8000 psi system has the same or lower warm up times,
system availability and readiness will be acceptable.

I
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